dncurrency/nano/node/transport/tcp.cpp
Piotr Wójcik baabcca426
Telemetry refactor (#4026)
* Simplify telemetry

* Fix tests

* Cleanup config

* Cleanup local telemetry

* Remove unused flag

* Fix slow tests

* Fix rpc tests

* Cleanup `nano::test::compare_telemetry`

* Add more testcases

* Add ongoing telemetry broadcasts

* Cleanup

* Fixes

* Do not immediately remove telemetry from disconnected peers

* Increase telemetry broadcast & request intervals

* Update docs

* Refactor `peer_exclusion` a bit

* Filter and disconnect from peers with mismatched genesis

---------

Co-authored-by: clemahieu <clemahieu@gmail.com>
2023-02-02 16:14:26 +01:00

743 lines
26 KiB
C++

#include <nano/lib/stats.hpp>
#include <nano/node/node.hpp>
#include <nano/node/transport/tcp.hpp>
#include <boost/format.hpp>
/*
* channel_tcp
*/
nano::transport::channel_tcp::channel_tcp (nano::node & node_a, std::weak_ptr<nano::socket> socket_a) :
channel (node_a),
socket (std::move (socket_a))
{
}
nano::transport::channel_tcp::~channel_tcp ()
{
nano::lock_guard<nano::mutex> lk{ channel_mutex };
// Close socket. Exception: socket is used by tcp_server
if (auto socket_l = socket.lock ())
{
if (!temporary)
{
socket_l->close ();
}
}
}
std::size_t nano::transport::channel_tcp::hash_code () const
{
std::hash<::nano::tcp_endpoint> hash;
return hash (get_tcp_endpoint ());
}
bool nano::transport::channel_tcp::operator== (nano::transport::channel const & other_a) const
{
bool result (false);
auto other_l (dynamic_cast<nano::transport::channel_tcp const *> (&other_a));
if (other_l != nullptr)
{
return *this == *other_l;
}
return result;
}
void nano::transport::channel_tcp::send_buffer (nano::shared_const_buffer const & buffer_a, std::function<void (boost::system::error_code const &, std::size_t)> const & callback_a, nano::buffer_drop_policy policy_a)
{
if (auto socket_l = socket.lock ())
{
if (!socket_l->max () || (policy_a == nano::buffer_drop_policy::no_socket_drop && !socket_l->full ()))
{
socket_l->async_write (
buffer_a, [endpoint_a = socket_l->remote_endpoint (), node = std::weak_ptr<nano::node> (node.shared ()), callback_a] (boost::system::error_code const & ec, std::size_t size_a) {
if (auto node_l = node.lock ())
{
if (!ec)
{
node_l->network.tcp_channels.update (endpoint_a);
}
if (ec == boost::system::errc::host_unreachable)
{
node_l->stats.inc (nano::stat::type::error, nano::stat::detail::unreachable_host, nano::stat::dir::out);
}
if (callback_a)
{
callback_a (ec, size_a);
}
}
});
}
else
{
if (policy_a == nano::buffer_drop_policy::no_socket_drop)
{
node.stats.inc (nano::stat::type::tcp, nano::stat::detail::tcp_write_no_socket_drop, nano::stat::dir::out);
}
else
{
node.stats.inc (nano::stat::type::tcp, nano::stat::detail::tcp_write_drop, nano::stat::dir::out);
}
if (callback_a)
{
callback_a (boost::system::errc::make_error_code (boost::system::errc::no_buffer_space), 0);
}
}
}
else if (callback_a)
{
node.background ([callback_a] () {
callback_a (boost::system::errc::make_error_code (boost::system::errc::not_supported), 0);
});
}
}
std::string nano::transport::channel_tcp::to_string () const
{
return boost::str (boost::format ("%1%") % get_tcp_endpoint ());
}
void nano::transport::channel_tcp::set_endpoint ()
{
nano::lock_guard<nano::mutex> lk{ channel_mutex };
debug_assert (endpoint == nano::tcp_endpoint (boost::asio::ip::address_v6::any (), 0)); // Not initialized endpoint value
// Calculate TCP socket endpoint
if (auto socket_l = socket.lock ())
{
endpoint = socket_l->remote_endpoint ();
}
}
/*
* tcp_channels
*/
nano::transport::tcp_channels::tcp_channels (nano::node & node, std::function<void (nano::message const &, std::shared_ptr<nano::transport::channel> const &)> sink) :
node{ node },
sink{ std::move (sink) }
{
}
bool nano::transport::tcp_channels::insert (std::shared_ptr<nano::transport::channel_tcp> const & channel_a, std::shared_ptr<nano::socket> const & socket_a, std::shared_ptr<nano::transport::tcp_server> const & server_a)
{
auto endpoint (channel_a->get_tcp_endpoint ());
debug_assert (endpoint.address ().is_v6 ());
auto udp_endpoint (nano::transport::map_tcp_to_endpoint (endpoint));
bool error (true);
if (!node.network.not_a_peer (udp_endpoint, node.config.allow_local_peers) && !stopped)
{
nano::unique_lock<nano::mutex> lock{ mutex };
auto existing (channels.get<endpoint_tag> ().find (endpoint));
if (existing == channels.get<endpoint_tag> ().end ())
{
auto node_id (channel_a->get_node_id ());
if (!channel_a->temporary)
{
channels.get<node_id_tag> ().erase (node_id);
}
channels.get<endpoint_tag> ().emplace (channel_a, socket_a, server_a);
attempts.get<endpoint_tag> ().erase (endpoint);
error = false;
lock.unlock ();
node.network.channel_observer (channel_a);
// Remove UDP channel to same IP:port if exists
node.network.udp_channels.erase (udp_endpoint);
// Remove UDP channels with same node ID
node.network.udp_channels.clean_node_id (node_id);
}
}
return error;
}
void nano::transport::tcp_channels::erase (nano::tcp_endpoint const & endpoint_a)
{
nano::lock_guard<nano::mutex> lock{ mutex };
channels.get<endpoint_tag> ().erase (endpoint_a);
}
std::size_t nano::transport::tcp_channels::size () const
{
nano::lock_guard<nano::mutex> lock{ mutex };
return channels.size ();
}
std::shared_ptr<nano::transport::channel_tcp> nano::transport::tcp_channels::find_channel (nano::tcp_endpoint const & endpoint_a) const
{
nano::lock_guard<nano::mutex> lock{ mutex };
std::shared_ptr<nano::transport::channel_tcp> result;
auto existing (channels.get<endpoint_tag> ().find (endpoint_a));
if (existing != channels.get<endpoint_tag> ().end ())
{
result = existing->channel;
}
return result;
}
std::unordered_set<std::shared_ptr<nano::transport::channel>> nano::transport::tcp_channels::random_set (std::size_t count_a, uint8_t min_version, bool include_temporary_channels_a) const
{
std::unordered_set<std::shared_ptr<nano::transport::channel>> result;
result.reserve (count_a);
nano::lock_guard<nano::mutex> lock{ mutex };
// Stop trying to fill result with random samples after this many attempts
auto random_cutoff (count_a * 2);
auto peers_size (channels.size ());
// Usually count_a will be much smaller than peers.size()
// Otherwise make sure we have a cutoff on attempting to randomly fill
if (!channels.empty ())
{
for (auto i (0); i < random_cutoff && result.size () < count_a; ++i)
{
auto index (nano::random_pool::generate_word32 (0, static_cast<CryptoPP::word32> (peers_size - 1)));
auto channel = channels.get<random_access_tag> ()[index].channel;
if (channel->get_network_version () >= min_version && (include_temporary_channels_a || !channel->temporary))
{
result.insert (channel);
}
}
}
return result;
}
void nano::transport::tcp_channels::random_fill (std::array<nano::endpoint, 8> & target_a) const
{
auto peers (random_set (target_a.size ()));
debug_assert (peers.size () <= target_a.size ());
auto endpoint (nano::endpoint (boost::asio::ip::address_v6{}, 0));
debug_assert (endpoint.address ().is_v6 ());
std::fill (target_a.begin (), target_a.end (), endpoint);
auto j (target_a.begin ());
for (auto i (peers.begin ()), n (peers.end ()); i != n; ++i, ++j)
{
debug_assert ((*i)->get_endpoint ().address ().is_v6 ());
debug_assert (j < target_a.end ());
*j = (*i)->get_endpoint ();
}
}
bool nano::transport::tcp_channels::store_all (bool clear_peers)
{
// We can't hold the mutex while starting a write transaction, so
// we collect endpoints to be saved and then relase the lock.
std::vector<nano::endpoint> endpoints;
{
nano::lock_guard<nano::mutex> lock{ mutex };
endpoints.reserve (channels.size ());
std::transform (channels.begin (), channels.end (),
std::back_inserter (endpoints), [] (auto const & channel) { return nano::transport::map_tcp_to_endpoint (channel.endpoint ()); });
}
bool result (false);
if (!endpoints.empty ())
{
// Clear all peers then refresh with the current list of peers
auto transaction (node.store.tx_begin_write ({ tables::peers }));
if (clear_peers)
{
node.store.peer.clear (transaction);
}
for (auto const & endpoint : endpoints)
{
node.store.peer.put (transaction, nano::endpoint_key{ endpoint.address ().to_v6 ().to_bytes (), endpoint.port () });
}
result = true;
}
return result;
}
std::shared_ptr<nano::transport::channel_tcp> nano::transport::tcp_channels::find_node_id (nano::account const & node_id_a)
{
std::shared_ptr<nano::transport::channel_tcp> result;
nano::lock_guard<nano::mutex> lock{ mutex };
auto existing (channels.get<node_id_tag> ().find (node_id_a));
if (existing != channels.get<node_id_tag> ().end ())
{
result = existing->channel;
}
return result;
}
nano::tcp_endpoint nano::transport::tcp_channels::bootstrap_peer (uint8_t connection_protocol_version_min)
{
nano::tcp_endpoint result (boost::asio::ip::address_v6::any (), 0);
nano::lock_guard<nano::mutex> lock{ mutex };
for (auto i (channels.get<last_bootstrap_attempt_tag> ().begin ()), n (channels.get<last_bootstrap_attempt_tag> ().end ()); i != n;)
{
if (i->channel->get_network_version () >= connection_protocol_version_min)
{
result = nano::transport::map_endpoint_to_tcp (i->channel->get_peering_endpoint ());
channels.get<last_bootstrap_attempt_tag> ().modify (i, [] (channel_tcp_wrapper & wrapper_a) {
wrapper_a.channel->set_last_bootstrap_attempt (std::chrono::steady_clock::now ());
});
i = n;
}
else
{
++i;
}
}
return result;
}
void nano::transport::tcp_channels::process_messages ()
{
while (!stopped)
{
auto item (node.network.tcp_message_manager.get_message ());
if (item.message != nullptr)
{
process_message (*item.message, item.endpoint, item.node_id, item.socket);
}
}
}
void nano::transport::tcp_channels::process_message (nano::message const & message_a, nano::tcp_endpoint const & endpoint_a, nano::account const & node_id_a, std::shared_ptr<nano::socket> const & socket_a)
{
auto type_a = socket_a->type ();
if (!stopped && message_a.header.version_using >= node.network_params.network.protocol_version_min)
{
auto channel (node.network.find_channel (nano::transport::map_tcp_to_endpoint (endpoint_a)));
if (channel)
{
sink (message_a, channel);
}
else
{
channel = node.network.find_node_id (node_id_a);
if (channel)
{
sink (message_a, channel);
}
else if (!node.network.excluded_peers.check (endpoint_a))
{
if (!node_id_a.is_zero ())
{
// Add temporary channel
auto temporary_channel (std::make_shared<nano::transport::channel_tcp> (node, socket_a));
temporary_channel->set_endpoint ();
debug_assert (endpoint_a == temporary_channel->get_tcp_endpoint ());
temporary_channel->set_node_id (node_id_a);
temporary_channel->set_network_version (message_a.header.version_using);
temporary_channel->temporary = true;
debug_assert (type_a == nano::socket::type_t::realtime || type_a == nano::socket::type_t::realtime_response_server);
// Don't insert temporary channels for response_server
if (type_a == nano::socket::type_t::realtime)
{
insert (temporary_channel, socket_a, nullptr);
}
sink (message_a, temporary_channel);
}
else
{
// Initial node_id_handshake request without node ID
debug_assert (message_a.header.type == nano::message_type::node_id_handshake);
node.stats.inc (nano::stat::type::message, nano::stat::detail::node_id_handshake, nano::stat::dir::in);
}
}
}
if (channel)
{
channel->set_last_packet_received (std::chrono::steady_clock::now ());
}
}
}
void nano::transport::tcp_channels::start ()
{
ongoing_keepalive ();
}
void nano::transport::tcp_channels::stop ()
{
stopped = true;
nano::unique_lock<nano::mutex> lock{ mutex };
// Close all TCP sockets
for (auto const & channel : channels)
{
if (channel.socket)
{
channel.socket->close ();
}
// Remove response server
if (channel.response_server)
{
channel.response_server->stop ();
}
}
channels.clear ();
}
bool nano::transport::tcp_channels::max_ip_connections (nano::tcp_endpoint const & endpoint_a)
{
if (node.flags.disable_max_peers_per_ip)
{
return false;
}
bool result{ false };
auto const address (nano::transport::ipv4_address_or_ipv6_subnet (endpoint_a.address ()));
nano::unique_lock<nano::mutex> lock{ mutex };
result = channels.get<ip_address_tag> ().count (address) >= node.network_params.network.max_peers_per_ip;
if (!result)
{
result = attempts.get<ip_address_tag> ().count (address) >= node.network_params.network.max_peers_per_ip;
}
if (result)
{
node.stats.inc (nano::stat::type::tcp, nano::stat::detail::tcp_max_per_ip, nano::stat::dir::out);
}
return result;
}
bool nano::transport::tcp_channels::max_subnetwork_connections (nano::tcp_endpoint const & endpoint_a)
{
if (node.flags.disable_max_peers_per_subnetwork)
{
return false;
}
bool result{ false };
auto const subnet (nano::transport::map_address_to_subnetwork (endpoint_a.address ()));
nano::unique_lock<nano::mutex> lock{ mutex };
result = channels.get<subnetwork_tag> ().count (subnet) >= node.network_params.network.max_peers_per_subnetwork;
if (!result)
{
result = attempts.get<subnetwork_tag> ().count (subnet) >= node.network_params.network.max_peers_per_subnetwork;
}
if (result)
{
node.stats.inc (nano::stat::type::tcp, nano::stat::detail::tcp_max_per_subnetwork, nano::stat::dir::out);
}
return result;
}
bool nano::transport::tcp_channels::max_ip_or_subnetwork_connections (nano::tcp_endpoint const & endpoint_a)
{
return max_ip_connections (endpoint_a) || max_subnetwork_connections (endpoint_a);
}
bool nano::transport::tcp_channels::reachout (nano::endpoint const & endpoint_a)
{
auto tcp_endpoint (nano::transport::map_endpoint_to_tcp (endpoint_a));
// Don't overload single IP
bool error = node.network.excluded_peers.check (tcp_endpoint) || max_ip_or_subnetwork_connections (tcp_endpoint);
if (!error && !node.flags.disable_tcp_realtime)
{
// Don't keepalive to nodes that already sent us something
error |= find_channel (tcp_endpoint) != nullptr;
nano::lock_guard<nano::mutex> lock{ mutex };
auto inserted (attempts.emplace (tcp_endpoint));
error |= !inserted.second;
}
return error;
}
std::unique_ptr<nano::container_info_component> nano::transport::tcp_channels::collect_container_info (std::string const & name)
{
std::size_t channels_count;
std::size_t attemps_count;
std::size_t node_id_handshake_sockets_count;
{
nano::lock_guard<nano::mutex> guard{ mutex };
channels_count = channels.size ();
attemps_count = attempts.size ();
}
auto composite = std::make_unique<container_info_composite> (name);
composite->add_component (std::make_unique<container_info_leaf> (container_info{ "channels", channels_count, sizeof (decltype (channels)::value_type) }));
composite->add_component (std::make_unique<container_info_leaf> (container_info{ "attempts", attemps_count, sizeof (decltype (attempts)::value_type) }));
return composite;
}
void nano::transport::tcp_channels::purge (std::chrono::steady_clock::time_point const & cutoff_a)
{
nano::lock_guard<nano::mutex> lock{ mutex };
// Remove channels with dead underlying sockets
for (auto it = channels.begin (); it != channels.end (); ++it)
{
if (!it->socket->alive ())
{
it = channels.erase (it);
}
}
auto disconnect_cutoff (channels.get<last_packet_sent_tag> ().lower_bound (cutoff_a));
channels.get<last_packet_sent_tag> ().erase (channels.get<last_packet_sent_tag> ().begin (), disconnect_cutoff);
// Remove keepalive attempt tracking for attempts older than cutoff
auto attempts_cutoff (attempts.get<last_attempt_tag> ().lower_bound (cutoff_a));
attempts.get<last_attempt_tag> ().erase (attempts.get<last_attempt_tag> ().begin (), attempts_cutoff);
// Check if any tcp channels belonging to old protocol versions which may still be alive due to async operations
auto lower_bound = channels.get<version_tag> ().lower_bound (node.network_params.network.protocol_version_min);
channels.get<version_tag> ().erase (channels.get<version_tag> ().begin (), lower_bound);
}
void nano::transport::tcp_channels::ongoing_keepalive ()
{
nano::keepalive message{ node.network_params.network };
node.network.random_fill (message.peers);
nano::unique_lock<nano::mutex> lock{ mutex };
// Wake up channels
std::vector<std::shared_ptr<nano::transport::channel_tcp>> send_list;
auto keepalive_sent_cutoff (channels.get<last_packet_sent_tag> ().lower_bound (std::chrono::steady_clock::now () - node.network_params.network.keepalive_period));
for (auto i (channels.get<last_packet_sent_tag> ().begin ()); i != keepalive_sent_cutoff; ++i)
{
send_list.push_back (i->channel);
}
lock.unlock ();
for (auto & channel : send_list)
{
channel->send (message);
}
// Attempt to start TCP connections to known UDP peers
nano::tcp_endpoint invalid_endpoint (boost::asio::ip::address_v6::any (), 0);
if (!node.network_params.network.is_dev_network () && !node.flags.disable_udp)
{
std::size_t random_count (std::min (static_cast<std::size_t> (6), static_cast<std::size_t> (std::ceil (std::sqrt (node.network.udp_channels.size ())))));
for (auto i (0); i <= random_count; ++i)
{
auto tcp_endpoint (node.network.udp_channels.bootstrap_peer (node.network_params.network.protocol_version_min));
if (tcp_endpoint != invalid_endpoint && find_channel (tcp_endpoint) == nullptr && !node.network.excluded_peers.check (tcp_endpoint))
{
start_tcp (nano::transport::map_tcp_to_endpoint (tcp_endpoint));
}
}
}
std::weak_ptr<nano::node> node_w (node.shared ());
node.workers.add_timed_task (std::chrono::steady_clock::now () + node.network_params.network.keepalive_period, [node_w] () {
if (auto node_l = node_w.lock ())
{
if (!node_l->network.tcp_channels.stopped)
{
node_l->network.tcp_channels.ongoing_keepalive ();
}
}
});
}
void nano::transport::tcp_channels::list (std::deque<std::shared_ptr<nano::transport::channel>> & deque_a, uint8_t minimum_version_a, bool include_temporary_channels_a)
{
nano::lock_guard<nano::mutex> lock{ mutex };
// clang-format off
nano::transform_if (channels.get<random_access_tag> ().begin (), channels.get<random_access_tag> ().end (), std::back_inserter (deque_a),
[include_temporary_channels_a, minimum_version_a](auto & channel_a) { return channel_a.channel->get_network_version () >= minimum_version_a && (include_temporary_channels_a || !channel_a.channel->temporary); },
[](auto const & channel) { return channel.channel; });
// clang-format on
}
void nano::transport::tcp_channels::modify (std::shared_ptr<nano::transport::channel_tcp> const & channel_a, std::function<void (std::shared_ptr<nano::transport::channel_tcp> const &)> modify_callback_a)
{
nano::lock_guard<nano::mutex> lock{ mutex };
auto existing (channels.get<endpoint_tag> ().find (channel_a->get_tcp_endpoint ()));
if (existing != channels.get<endpoint_tag> ().end ())
{
channels.get<endpoint_tag> ().modify (existing, [modify_callback = std::move (modify_callback_a)] (channel_tcp_wrapper & wrapper_a) {
modify_callback (wrapper_a.channel);
});
}
}
void nano::transport::tcp_channels::update (nano::tcp_endpoint const & endpoint_a)
{
nano::lock_guard<nano::mutex> lock{ mutex };
auto existing (channels.get<endpoint_tag> ().find (endpoint_a));
if (existing != channels.get<endpoint_tag> ().end ())
{
channels.get<endpoint_tag> ().modify (existing, [] (channel_tcp_wrapper & wrapper_a) {
wrapper_a.channel->set_last_packet_sent (std::chrono::steady_clock::now ());
});
}
}
void nano::transport::tcp_channels::start_tcp (nano::endpoint const & endpoint_a)
{
auto socket = std::make_shared<nano::client_socket> (node);
std::weak_ptr<nano::socket> socket_w (socket);
auto channel (std::make_shared<nano::transport::channel_tcp> (node, socket_w));
std::weak_ptr<nano::node> node_w (node.shared ());
socket->async_connect (nano::transport::map_endpoint_to_tcp (endpoint_a),
[node_w, channel, socket, endpoint_a] (boost::system::error_code const & ec) {
if (auto node_l = node_w.lock ())
{
if (!ec && channel)
{
// TCP node ID handshake
auto cookie (node_l->network.syn_cookies.assign (endpoint_a));
nano::node_id_handshake message (node_l->network_params.network, cookie, boost::none);
if (node_l->config.logging.network_node_id_handshake_logging ())
{
node_l->logger.try_log (boost::str (boost::format ("Node ID handshake request sent with node ID %1% to %2%: query %3%") % node_l->node_id.pub.to_node_id () % endpoint_a % (cookie.has_value () ? cookie->to_string () : "not set")));
}
channel->set_endpoint ();
std::shared_ptr<std::vector<uint8_t>> receive_buffer (std::make_shared<std::vector<uint8_t>> ());
receive_buffer->resize (256);
channel->send (message, [node_w, channel, endpoint_a, receive_buffer] (boost::system::error_code const & ec, std::size_t size_a) {
if (auto node_l = node_w.lock ())
{
if (!ec)
{
node_l->network.tcp_channels.start_tcp_receive_node_id (channel, endpoint_a, receive_buffer);
}
else
{
if (auto socket_l = channel->socket.lock ())
{
socket_l->close ();
}
if (node_l->config.logging.network_node_id_handshake_logging ())
{
node_l->logger.try_log (boost::str (boost::format ("Error sending node_id_handshake to %1%: %2%") % endpoint_a % ec.message ()));
}
}
}
});
}
else
{
if (node_l->config.logging.network_logging ())
{
if (ec)
{
node_l->logger.try_log (boost::str (boost::format ("Error connecting to %1%: %2%") % endpoint_a % ec.message ()));
}
else
{
node_l->logger.try_log (boost::str (boost::format ("Error connecting to %1%") % endpoint_a));
}
}
}
}
});
}
void nano::transport::tcp_channels::start_tcp_receive_node_id (std::shared_ptr<nano::transport::channel_tcp> const & channel_a, nano::endpoint const & endpoint_a, std::shared_ptr<std::vector<uint8_t>> const & receive_buffer_a)
{
std::weak_ptr<nano::node> node_w (node.shared ());
auto socket_l = channel_a->socket.lock ();
if (!socket_l)
{
return;
}
auto cleanup_node_id_handshake_socket = [socket_w = channel_a->socket, node_w] (nano::endpoint const & endpoint_a) {
if (auto node_l = node_w.lock ())
{
if (auto socket_l = socket_w.lock ())
{
socket_l->close ();
}
}
};
socket_l->async_read (receive_buffer_a, 8 + sizeof (nano::account) + sizeof (nano::account) + sizeof (nano::signature), [node_w, channel_a, endpoint_a, receive_buffer_a, cleanup_node_id_handshake_socket] (boost::system::error_code const & ec, std::size_t size_a) {
auto node_l = node_w.lock ();
if (!node_l)
{
return;
}
if (ec || !channel_a)
{
if (node_l->config.logging.network_node_id_handshake_logging ())
{
node_l->logger.try_log (boost::str (boost::format ("Error reading node_id_handshake from %1%: %2%") % endpoint_a % ec.message ()));
}
cleanup_node_id_handshake_socket (endpoint_a);
return;
}
node_l->stats.inc (nano::stat::type::message, nano::stat::detail::node_id_handshake, nano::stat::dir::in);
auto error (false);
nano::bufferstream stream (receive_buffer_a->data (), size_a);
nano::message_header header (error, stream);
// the header type should in principle be checked after checking the network bytes and the version numbers, I will not change it here since the benefits do not outweight the difficulties
if (error || header.type != nano::message_type::node_id_handshake)
{
if (node_l->config.logging.network_node_id_handshake_logging ())
{
node_l->logger.try_log (boost::str (boost::format ("Error reading node_id_handshake message header from %1%") % endpoint_a));
}
cleanup_node_id_handshake_socket (endpoint_a);
return;
}
if (header.network != node_l->network_params.network.current_network || header.version_using < node_l->network_params.network.protocol_version_min)
{
// error handling, either the networks bytes or the version is wrong
if (header.network == node_l->network_params.network.current_network)
{
node_l->stats.inc (nano::stat::type::message, nano::stat::detail::invalid_network);
}
else
{
node_l->stats.inc (nano::stat::type::message, nano::stat::detail::outdated_version);
}
cleanup_node_id_handshake_socket (endpoint_a);
// Cleanup attempt
{
nano::lock_guard<nano::mutex> lock{ node_l->network.tcp_channels.mutex };
node_l->network.tcp_channels.attempts.get<endpoint_tag> ().erase (nano::transport::map_endpoint_to_tcp (endpoint_a));
}
return;
}
nano::node_id_handshake message (error, stream, header);
if (error || !message.response || !message.query)
{
if (node_l->config.logging.network_node_id_handshake_logging ())
{
node_l->logger.try_log (boost::str (boost::format ("Error reading node_id_handshake from %1%") % endpoint_a));
}
cleanup_node_id_handshake_socket (endpoint_a);
return;
}
channel_a->set_network_version (header.version_using);
auto node_id (message.response->first);
bool process (!node_l->network.syn_cookies.validate (endpoint_a, node_id, message.response->second) && node_id != node_l->node_id.pub);
if (!process)
{
return;
}
/* If node ID is known, don't establish new connection
Exception: temporary channels from tcp_server */
auto existing_channel (node_l->network.tcp_channels.find_node_id (node_id));
if (existing_channel && !existing_channel->temporary)
{
return;
}
channel_a->set_node_id (node_id);
channel_a->set_last_packet_received (std::chrono::steady_clock::now ());
boost::optional<std::pair<nano::account, nano::signature>> response (std::make_pair (node_l->node_id.pub, nano::sign_message (node_l->node_id.prv, node_l->node_id.pub, *message.query)));
nano::node_id_handshake response_message (node_l->network_params.network, boost::none, response);
if (node_l->config.logging.network_node_id_handshake_logging ())
{
node_l->logger.try_log (boost::str (boost::format ("Node ID handshake response sent with node ID %1% to %2%: query %3%") % node_l->node_id.pub.to_node_id () % endpoint_a % (*message.query).to_string ()));
}
channel_a->send (response_message, [node_w, channel_a, endpoint_a, cleanup_node_id_handshake_socket] (boost::system::error_code const & ec, std::size_t size_a) {
auto node_l = node_w.lock ();
if (!node_l)
{
return;
}
if (ec || !channel_a)
{
if (node_l->config.logging.network_node_id_handshake_logging ())
{
node_l->logger.try_log (boost::str (boost::format ("Error sending node_id_handshake to %1%: %2%") % endpoint_a % ec.message ()));
}
cleanup_node_id_handshake_socket (endpoint_a);
return;
}
// Insert new node ID connection
auto socket_l = channel_a->socket.lock ();
if (!socket_l)
{
return;
}
channel_a->set_last_packet_sent (std::chrono::steady_clock::now ());
auto response_server = std::make_shared<nano::transport::tcp_server> (socket_l, node_l);
node_l->network.tcp_channels.insert (channel_a, socket_l, response_server);
// Listen for possible responses
response_server->socket->type_set (nano::socket::type_t::realtime_response_server);
response_server->remote_node_id = channel_a->get_node_id ();
response_server->start ();
});
});
}