Update to last common bleve (#3986)
This commit is contained in:
parent
1b7cd3d0b0
commit
917b9641ec
184 changed files with 39576 additions and 121 deletions
613
vendor/github.com/RoaringBitmap/roaring/parallel.go
generated
vendored
Normal file
613
vendor/github.com/RoaringBitmap/roaring/parallel.go
generated
vendored
Normal file
|
@ -0,0 +1,613 @@
|
|||
package roaring
|
||||
|
||||
import (
|
||||
"container/heap"
|
||||
"fmt"
|
||||
"runtime"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var defaultWorkerCount = runtime.NumCPU()
|
||||
|
||||
type bitmapContainerKey struct {
|
||||
key uint16
|
||||
idx int
|
||||
bitmap *Bitmap
|
||||
}
|
||||
|
||||
type multipleContainers struct {
|
||||
key uint16
|
||||
containers []container
|
||||
idx int
|
||||
}
|
||||
|
||||
type keyedContainer struct {
|
||||
key uint16
|
||||
container container
|
||||
idx int
|
||||
}
|
||||
|
||||
type bitmapContainerHeap []bitmapContainerKey
|
||||
|
||||
func (h bitmapContainerHeap) Len() int { return len(h) }
|
||||
func (h bitmapContainerHeap) Less(i, j int) bool { return h[i].key < h[j].key }
|
||||
func (h bitmapContainerHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
|
||||
|
||||
func (h *bitmapContainerHeap) Push(x interface{}) {
|
||||
// Push and Pop use pointer receivers because they modify the slice's length,
|
||||
// not just its contents.
|
||||
*h = append(*h, x.(bitmapContainerKey))
|
||||
}
|
||||
|
||||
func (h *bitmapContainerHeap) Pop() interface{} {
|
||||
old := *h
|
||||
n := len(old)
|
||||
x := old[n-1]
|
||||
*h = old[0 : n-1]
|
||||
return x
|
||||
}
|
||||
|
||||
func (h bitmapContainerHeap) Peek() bitmapContainerKey {
|
||||
return h[0]
|
||||
}
|
||||
|
||||
func (h *bitmapContainerHeap) popIncrementing() (key uint16, container container) {
|
||||
k := h.Peek()
|
||||
key = k.key
|
||||
container = k.bitmap.highlowcontainer.containers[k.idx]
|
||||
|
||||
newIdx := k.idx + 1
|
||||
if newIdx < k.bitmap.highlowcontainer.size() {
|
||||
k = bitmapContainerKey{
|
||||
k.bitmap.highlowcontainer.keys[newIdx],
|
||||
newIdx,
|
||||
k.bitmap,
|
||||
}
|
||||
(*h)[0] = k
|
||||
heap.Fix(h, 0)
|
||||
} else {
|
||||
heap.Pop(h)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (h *bitmapContainerHeap) Next(containers []container) multipleContainers {
|
||||
if h.Len() == 0 {
|
||||
return multipleContainers{}
|
||||
}
|
||||
|
||||
key, container := h.popIncrementing()
|
||||
containers = append(containers, container)
|
||||
|
||||
for h.Len() > 0 && key == h.Peek().key {
|
||||
_, container = h.popIncrementing()
|
||||
containers = append(containers, container)
|
||||
}
|
||||
|
||||
return multipleContainers{
|
||||
key,
|
||||
containers,
|
||||
-1,
|
||||
}
|
||||
}
|
||||
|
||||
func newBitmapContainerHeap(bitmaps ...*Bitmap) bitmapContainerHeap {
|
||||
// Initialize heap
|
||||
var h bitmapContainerHeap = make([]bitmapContainerKey, 0, len(bitmaps))
|
||||
for _, bitmap := range bitmaps {
|
||||
if !bitmap.IsEmpty() {
|
||||
key := bitmapContainerKey{
|
||||
bitmap.highlowcontainer.keys[0],
|
||||
0,
|
||||
bitmap,
|
||||
}
|
||||
h = append(h, key)
|
||||
}
|
||||
}
|
||||
|
||||
heap.Init(&h)
|
||||
|
||||
return h
|
||||
}
|
||||
|
||||
func repairAfterLazy(c container) container {
|
||||
switch t := c.(type) {
|
||||
case *bitmapContainer:
|
||||
if t.cardinality == invalidCardinality {
|
||||
t.computeCardinality()
|
||||
}
|
||||
|
||||
if t.getCardinality() <= arrayDefaultMaxSize {
|
||||
return t.toArrayContainer()
|
||||
} else if c.(*bitmapContainer).isFull() {
|
||||
return newRunContainer16Range(0, MaxUint16)
|
||||
}
|
||||
}
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
func toBitmapContainer(c container) container {
|
||||
switch t := c.(type) {
|
||||
case *arrayContainer:
|
||||
return t.toBitmapContainer()
|
||||
case *runContainer16:
|
||||
if !t.isFull() {
|
||||
return t.toBitmapContainer()
|
||||
}
|
||||
}
|
||||
return c
|
||||
}
|
||||
|
||||
func appenderRoutine(bitmapChan chan<- *Bitmap, resultChan <-chan keyedContainer, expectedKeysChan <-chan int) {
|
||||
expectedKeys := -1
|
||||
appendedKeys := 0
|
||||
keys := make([]uint16, 0)
|
||||
containers := make([]container, 0)
|
||||
for appendedKeys != expectedKeys {
|
||||
select {
|
||||
case item := <-resultChan:
|
||||
if len(keys) <= item.idx {
|
||||
keys = append(keys, make([]uint16, item.idx-len(keys)+1)...)
|
||||
containers = append(containers, make([]container, item.idx-len(containers)+1)...)
|
||||
}
|
||||
keys[item.idx] = item.key
|
||||
containers[item.idx] = item.container
|
||||
|
||||
appendedKeys++
|
||||
case msg := <-expectedKeysChan:
|
||||
expectedKeys = msg
|
||||
}
|
||||
}
|
||||
answer := &Bitmap{
|
||||
roaringArray{
|
||||
make([]uint16, 0, expectedKeys),
|
||||
make([]container, 0, expectedKeys),
|
||||
make([]bool, 0, expectedKeys),
|
||||
false,
|
||||
nil,
|
||||
},
|
||||
}
|
||||
for i := range keys {
|
||||
if containers[i] != nil { // in case a resulting container was empty, see ParAnd function
|
||||
answer.highlowcontainer.appendContainer(keys[i], containers[i], false)
|
||||
}
|
||||
}
|
||||
|
||||
bitmapChan <- answer
|
||||
}
|
||||
|
||||
// ParHeapOr computes the union (OR) of all provided bitmaps in parallel,
|
||||
// where the parameter "parallelism" determines how many workers are to be used
|
||||
// (if it is set to 0, a default number of workers is chosen)
|
||||
// ParHeapOr uses a heap to compute the union. For rare cases it might be faster than ParOr
|
||||
func ParHeapOr(parallelism int, bitmaps ...*Bitmap) *Bitmap {
|
||||
|
||||
bitmapCount := len(bitmaps)
|
||||
if bitmapCount == 0 {
|
||||
return NewBitmap()
|
||||
} else if bitmapCount == 1 {
|
||||
return bitmaps[0].Clone()
|
||||
}
|
||||
|
||||
if parallelism == 0 {
|
||||
parallelism = defaultWorkerCount
|
||||
}
|
||||
|
||||
h := newBitmapContainerHeap(bitmaps...)
|
||||
|
||||
bitmapChan := make(chan *Bitmap)
|
||||
inputChan := make(chan multipleContainers, 128)
|
||||
resultChan := make(chan keyedContainer, 32)
|
||||
expectedKeysChan := make(chan int)
|
||||
|
||||
pool := sync.Pool{
|
||||
New: func() interface{} {
|
||||
return make([]container, 0, len(bitmaps))
|
||||
},
|
||||
}
|
||||
|
||||
orFunc := func() {
|
||||
// Assumes only structs with >=2 containers are passed
|
||||
for input := range inputChan {
|
||||
c := toBitmapContainer(input.containers[0]).lazyOR(input.containers[1])
|
||||
for _, next := range input.containers[2:] {
|
||||
c = c.lazyIOR(next)
|
||||
}
|
||||
c = repairAfterLazy(c)
|
||||
kx := keyedContainer{
|
||||
input.key,
|
||||
c,
|
||||
input.idx,
|
||||
}
|
||||
resultChan <- kx
|
||||
pool.Put(input.containers[:0])
|
||||
}
|
||||
}
|
||||
|
||||
go appenderRoutine(bitmapChan, resultChan, expectedKeysChan)
|
||||
|
||||
for i := 0; i < parallelism; i++ {
|
||||
go orFunc()
|
||||
}
|
||||
|
||||
idx := 0
|
||||
for h.Len() > 0 {
|
||||
ck := h.Next(pool.Get().([]container))
|
||||
if len(ck.containers) == 1 {
|
||||
resultChan <- keyedContainer{
|
||||
ck.key,
|
||||
ck.containers[0],
|
||||
idx,
|
||||
}
|
||||
pool.Put(ck.containers[:0])
|
||||
} else {
|
||||
ck.idx = idx
|
||||
inputChan <- ck
|
||||
}
|
||||
idx++
|
||||
}
|
||||
expectedKeysChan <- idx
|
||||
|
||||
bitmap := <-bitmapChan
|
||||
|
||||
close(inputChan)
|
||||
close(resultChan)
|
||||
close(expectedKeysChan)
|
||||
|
||||
return bitmap
|
||||
}
|
||||
|
||||
// ParAnd computes the intersection (AND) of all provided bitmaps in parallel,
|
||||
// where the parameter "parallelism" determines how many workers are to be used
|
||||
// (if it is set to 0, a default number of workers is chosen)
|
||||
func ParAnd(parallelism int, bitmaps ...*Bitmap) *Bitmap {
|
||||
bitmapCount := len(bitmaps)
|
||||
if bitmapCount == 0 {
|
||||
return NewBitmap()
|
||||
} else if bitmapCount == 1 {
|
||||
return bitmaps[0].Clone()
|
||||
}
|
||||
|
||||
if parallelism == 0 {
|
||||
parallelism = defaultWorkerCount
|
||||
}
|
||||
|
||||
h := newBitmapContainerHeap(bitmaps...)
|
||||
|
||||
bitmapChan := make(chan *Bitmap)
|
||||
inputChan := make(chan multipleContainers, 128)
|
||||
resultChan := make(chan keyedContainer, 32)
|
||||
expectedKeysChan := make(chan int)
|
||||
|
||||
andFunc := func() {
|
||||
// Assumes only structs with >=2 containers are passed
|
||||
for input := range inputChan {
|
||||
c := input.containers[0].and(input.containers[1])
|
||||
for _, next := range input.containers[2:] {
|
||||
if c.getCardinality() == 0 {
|
||||
break
|
||||
}
|
||||
c = c.iand(next)
|
||||
}
|
||||
|
||||
// Send a nil explicitly if the result of the intersection is an empty container
|
||||
if c.getCardinality() == 0 {
|
||||
c = nil
|
||||
}
|
||||
|
||||
kx := keyedContainer{
|
||||
input.key,
|
||||
c,
|
||||
input.idx,
|
||||
}
|
||||
resultChan <- kx
|
||||
}
|
||||
}
|
||||
|
||||
go appenderRoutine(bitmapChan, resultChan, expectedKeysChan)
|
||||
|
||||
for i := 0; i < parallelism; i++ {
|
||||
go andFunc()
|
||||
}
|
||||
|
||||
idx := 0
|
||||
for h.Len() > 0 {
|
||||
ck := h.Next(make([]container, 0, 4))
|
||||
if len(ck.containers) == bitmapCount {
|
||||
ck.idx = idx
|
||||
inputChan <- ck
|
||||
idx++
|
||||
}
|
||||
}
|
||||
expectedKeysChan <- idx
|
||||
|
||||
bitmap := <-bitmapChan
|
||||
|
||||
close(inputChan)
|
||||
close(resultChan)
|
||||
close(expectedKeysChan)
|
||||
|
||||
return bitmap
|
||||
}
|
||||
|
||||
// ParOr computes the union (OR) of all provided bitmaps in parallel,
|
||||
// where the parameter "parallelism" determines how many workers are to be used
|
||||
// (if it is set to 0, a default number of workers is chosen)
|
||||
func ParOr(parallelism int, bitmaps ...*Bitmap) *Bitmap {
|
||||
var lKey uint16 = MaxUint16
|
||||
var hKey uint16 = 0
|
||||
|
||||
bitmapsFiltered := bitmaps[:0]
|
||||
for _, b := range bitmaps {
|
||||
if !b.IsEmpty() {
|
||||
bitmapsFiltered = append(bitmapsFiltered, b)
|
||||
}
|
||||
}
|
||||
bitmaps = bitmapsFiltered
|
||||
|
||||
for _, b := range bitmaps {
|
||||
lKey = minOfUint16(lKey, b.highlowcontainer.keys[0])
|
||||
hKey = maxOfUint16(hKey, b.highlowcontainer.keys[b.highlowcontainer.size()-1])
|
||||
}
|
||||
|
||||
if lKey == MaxUint16 && hKey == 0 {
|
||||
return New()
|
||||
} else if len(bitmaps) == 1 {
|
||||
return bitmaps[0]
|
||||
}
|
||||
|
||||
keyRange := hKey - lKey + 1
|
||||
if keyRange == 1 {
|
||||
// revert to FastOr. Since the key range is 0
|
||||
// no container-level aggregation parallelism is achievable
|
||||
return FastOr(bitmaps...)
|
||||
}
|
||||
|
||||
if parallelism == 0 {
|
||||
parallelism = defaultWorkerCount
|
||||
}
|
||||
|
||||
var chunkSize int
|
||||
var chunkCount int
|
||||
if parallelism*4 > int(keyRange) {
|
||||
chunkSize = 1
|
||||
chunkCount = int(keyRange)
|
||||
} else {
|
||||
chunkCount = parallelism * 4
|
||||
chunkSize = (int(keyRange) + chunkCount - 1) / chunkCount
|
||||
}
|
||||
|
||||
if chunkCount*chunkSize < int(keyRange) {
|
||||
// it's fine to panic to indicate an implementation error
|
||||
panic(fmt.Sprintf("invariant check failed: chunkCount * chunkSize < keyRange, %d * %d < %d", chunkCount, chunkSize, keyRange))
|
||||
}
|
||||
|
||||
chunks := make([]*roaringArray, chunkCount)
|
||||
|
||||
chunkSpecChan := make(chan parChunkSpec, minOfInt(maxOfInt(64, 2*parallelism), int(chunkCount)))
|
||||
chunkChan := make(chan parChunk, minOfInt(32, int(chunkCount)))
|
||||
|
||||
orFunc := func() {
|
||||
for spec := range chunkSpecChan {
|
||||
ra := lazyOrOnRange(&bitmaps[0].highlowcontainer, &bitmaps[1].highlowcontainer, spec.start, spec.end)
|
||||
for _, b := range bitmaps[2:] {
|
||||
ra = lazyIOrOnRange(ra, &b.highlowcontainer, spec.start, spec.end)
|
||||
}
|
||||
|
||||
for i, c := range ra.containers {
|
||||
ra.containers[i] = repairAfterLazy(c)
|
||||
}
|
||||
|
||||
chunkChan <- parChunk{ra, spec.idx}
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < parallelism; i++ {
|
||||
go orFunc()
|
||||
}
|
||||
|
||||
go func() {
|
||||
for i := 0; i < chunkCount; i++ {
|
||||
spec := parChunkSpec{
|
||||
start: uint16(int(lKey) + i*chunkSize),
|
||||
end: uint16(minOfInt(int(lKey)+(i+1)*chunkSize-1, int(hKey))),
|
||||
idx: int(i),
|
||||
}
|
||||
chunkSpecChan <- spec
|
||||
}
|
||||
}()
|
||||
|
||||
chunksRemaining := chunkCount
|
||||
for chunk := range chunkChan {
|
||||
chunks[chunk.idx] = chunk.ra
|
||||
chunksRemaining--
|
||||
if chunksRemaining == 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
close(chunkChan)
|
||||
close(chunkSpecChan)
|
||||
|
||||
containerCount := 0
|
||||
for _, chunk := range chunks {
|
||||
containerCount += chunk.size()
|
||||
}
|
||||
|
||||
result := Bitmap{
|
||||
roaringArray{
|
||||
containers: make([]container, containerCount),
|
||||
keys: make([]uint16, containerCount),
|
||||
needCopyOnWrite: make([]bool, containerCount),
|
||||
},
|
||||
}
|
||||
|
||||
resultOffset := 0
|
||||
for _, chunk := range chunks {
|
||||
copy(result.highlowcontainer.containers[resultOffset:], chunk.containers)
|
||||
copy(result.highlowcontainer.keys[resultOffset:], chunk.keys)
|
||||
copy(result.highlowcontainer.needCopyOnWrite[resultOffset:], chunk.needCopyOnWrite)
|
||||
resultOffset += chunk.size()
|
||||
}
|
||||
|
||||
return &result
|
||||
}
|
||||
|
||||
type parChunkSpec struct {
|
||||
start uint16
|
||||
end uint16
|
||||
idx int
|
||||
}
|
||||
|
||||
type parChunk struct {
|
||||
ra *roaringArray
|
||||
idx int
|
||||
}
|
||||
|
||||
func (c parChunk) size() int {
|
||||
return c.ra.size()
|
||||
}
|
||||
|
||||
func parNaiveStartAt(ra *roaringArray, start uint16, last uint16) int {
|
||||
for idx, key := range ra.keys {
|
||||
if key >= start && key <= last {
|
||||
return idx
|
||||
} else if key > last {
|
||||
break
|
||||
}
|
||||
}
|
||||
return ra.size()
|
||||
}
|
||||
|
||||
func lazyOrOnRange(ra1, ra2 *roaringArray, start, last uint16) *roaringArray {
|
||||
answer := newRoaringArray()
|
||||
length1 := ra1.size()
|
||||
length2 := ra2.size()
|
||||
|
||||
idx1 := parNaiveStartAt(ra1, start, last)
|
||||
idx2 := parNaiveStartAt(ra2, start, last)
|
||||
|
||||
var key1 uint16
|
||||
var key2 uint16
|
||||
if idx1 < length1 && idx2 < length2 {
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
|
||||
for key1 <= last && key2 <= last {
|
||||
|
||||
if key1 < key2 {
|
||||
answer.appendCopy(*ra1, idx1)
|
||||
idx1++
|
||||
if idx1 == length1 {
|
||||
break
|
||||
}
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
} else if key1 > key2 {
|
||||
answer.appendCopy(*ra2, idx2)
|
||||
idx2++
|
||||
if idx2 == length2 {
|
||||
break
|
||||
}
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
} else {
|
||||
c1 := ra1.getFastContainerAtIndex(idx1, false)
|
||||
|
||||
answer.appendContainer(key1, c1.lazyOR(ra2.getContainerAtIndex(idx2)), false)
|
||||
idx1++
|
||||
idx2++
|
||||
if idx1 == length1 || idx2 == length2 {
|
||||
break
|
||||
}
|
||||
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if idx2 < length2 {
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
for key2 <= last {
|
||||
answer.appendCopy(*ra2, idx2)
|
||||
idx2++
|
||||
if idx2 == length2 {
|
||||
break
|
||||
}
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
}
|
||||
}
|
||||
|
||||
if idx1 < length1 {
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
for key1 <= last {
|
||||
answer.appendCopy(*ra1, idx1)
|
||||
idx1++
|
||||
if idx1 == length1 {
|
||||
break
|
||||
}
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
}
|
||||
}
|
||||
return answer
|
||||
}
|
||||
|
||||
func lazyIOrOnRange(ra1, ra2 *roaringArray, start, last uint16) *roaringArray {
|
||||
length1 := ra1.size()
|
||||
length2 := ra2.size()
|
||||
|
||||
idx1 := 0
|
||||
idx2 := parNaiveStartAt(ra2, start, last)
|
||||
|
||||
var key1 uint16
|
||||
var key2 uint16
|
||||
if idx1 < length1 && idx2 < length2 {
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
|
||||
for key1 <= last && key2 <= last {
|
||||
if key1 < key2 {
|
||||
idx1++
|
||||
if idx1 >= length1 {
|
||||
break
|
||||
}
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
} else if key1 > key2 {
|
||||
ra1.insertNewKeyValueAt(idx1, key2, ra2.getContainerAtIndex(idx2))
|
||||
ra1.needCopyOnWrite[idx1] = true
|
||||
idx2++
|
||||
idx1++
|
||||
length1++
|
||||
if idx2 >= length2 {
|
||||
break
|
||||
}
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
} else {
|
||||
c1 := ra1.getFastContainerAtIndex(idx1, true)
|
||||
|
||||
ra1.containers[idx1] = c1.lazyIOR(ra2.getContainerAtIndex(idx2))
|
||||
ra1.needCopyOnWrite[idx1] = false
|
||||
idx1++
|
||||
idx2++
|
||||
if idx1 >= length1 || idx2 >= length2 {
|
||||
break
|
||||
}
|
||||
|
||||
key1 = ra1.getKeyAtIndex(idx1)
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
}
|
||||
}
|
||||
}
|
||||
if idx2 < length2 {
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
for key2 <= last {
|
||||
ra1.appendCopy(*ra2, idx2)
|
||||
idx2++
|
||||
if idx2 >= length2 {
|
||||
break
|
||||
}
|
||||
key2 = ra2.getKeyAtIndex(idx2)
|
||||
}
|
||||
}
|
||||
return ra1
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue