Use Go1.11 module (#5743)
* Migrate to go modules * make vendor * Update mvdan.cc/xurls * make vendor * Update code.gitea.io/git * make fmt-check * Update github.com/go-sql-driver/mysql * make vendor
This commit is contained in:
parent
d578b71d61
commit
d77176912b
575 changed files with 63239 additions and 13963 deletions
186
vendor/github.com/golang/snappy/encode.go
generated
vendored
186
vendor/github.com/golang/snappy/encode.go
generated
vendored
|
@ -10,78 +10,11 @@ import (
|
|||
"io"
|
||||
)
|
||||
|
||||
// maxOffset limits how far copy back-references can go, the same as the C++
|
||||
// code.
|
||||
const maxOffset = 1 << 15
|
||||
|
||||
// emitLiteral writes a literal chunk and returns the number of bytes written.
|
||||
func emitLiteral(dst, lit []byte) int {
|
||||
i, n := 0, uint(len(lit)-1)
|
||||
switch {
|
||||
case n < 60:
|
||||
dst[0] = uint8(n)<<2 | tagLiteral
|
||||
i = 1
|
||||
case n < 1<<8:
|
||||
dst[0] = 60<<2 | tagLiteral
|
||||
dst[1] = uint8(n)
|
||||
i = 2
|
||||
case n < 1<<16:
|
||||
dst[0] = 61<<2 | tagLiteral
|
||||
dst[1] = uint8(n)
|
||||
dst[2] = uint8(n >> 8)
|
||||
i = 3
|
||||
case n < 1<<24:
|
||||
dst[0] = 62<<2 | tagLiteral
|
||||
dst[1] = uint8(n)
|
||||
dst[2] = uint8(n >> 8)
|
||||
dst[3] = uint8(n >> 16)
|
||||
i = 4
|
||||
case int64(n) < 1<<32:
|
||||
dst[0] = 63<<2 | tagLiteral
|
||||
dst[1] = uint8(n)
|
||||
dst[2] = uint8(n >> 8)
|
||||
dst[3] = uint8(n >> 16)
|
||||
dst[4] = uint8(n >> 24)
|
||||
i = 5
|
||||
default:
|
||||
panic("snappy: source buffer is too long")
|
||||
}
|
||||
if copy(dst[i:], lit) != len(lit) {
|
||||
panic("snappy: destination buffer is too short")
|
||||
}
|
||||
return i + len(lit)
|
||||
}
|
||||
|
||||
// emitCopy writes a copy chunk and returns the number of bytes written.
|
||||
func emitCopy(dst []byte, offset, length int32) int {
|
||||
i := 0
|
||||
for length > 0 {
|
||||
x := length - 4
|
||||
if 0 <= x && x < 1<<3 && offset < 1<<11 {
|
||||
dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1
|
||||
dst[i+1] = uint8(offset)
|
||||
i += 2
|
||||
break
|
||||
}
|
||||
|
||||
x = length
|
||||
if x > 1<<6 {
|
||||
x = 1 << 6
|
||||
}
|
||||
dst[i+0] = uint8(x-1)<<2 | tagCopy2
|
||||
dst[i+1] = uint8(offset)
|
||||
dst[i+2] = uint8(offset >> 8)
|
||||
i += 3
|
||||
length -= x
|
||||
}
|
||||
return i
|
||||
}
|
||||
|
||||
// Encode returns the encoded form of src. The returned slice may be a sub-
|
||||
// slice of dst if dst was large enough to hold the entire encoded block.
|
||||
// Otherwise, a newly allocated slice will be returned.
|
||||
//
|
||||
// It is valid to pass a nil dst.
|
||||
// The dst and src must not overlap. It is valid to pass a nil dst.
|
||||
func Encode(dst, src []byte) []byte {
|
||||
if n := MaxEncodedLen(len(src)); n < 0 {
|
||||
panic(ErrTooLarge)
|
||||
|
@ -98,94 +31,43 @@ func Encode(dst, src []byte) []byte {
|
|||
if len(p) > maxBlockSize {
|
||||
p, src = p[:maxBlockSize], p[maxBlockSize:]
|
||||
}
|
||||
d += encodeBlock(dst[d:], p)
|
||||
if len(p) < minNonLiteralBlockSize {
|
||||
d += emitLiteral(dst[d:], p)
|
||||
} else {
|
||||
d += encodeBlock(dst[d:], p)
|
||||
}
|
||||
}
|
||||
return dst[:d]
|
||||
}
|
||||
|
||||
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
|
||||
// assumes that the varint-encoded length of the decompressed bytes has already
|
||||
// been written.
|
||||
// inputMargin is the minimum number of extra input bytes to keep, inside
|
||||
// encodeBlock's inner loop. On some architectures, this margin lets us
|
||||
// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
|
||||
// literals can be implemented as a single load to and store from a 16-byte
|
||||
// register. That literal's actual length can be as short as 1 byte, so this
|
||||
// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
|
||||
// the encoding loop will fix up the copy overrun, and this inputMargin ensures
|
||||
// that we don't overrun the dst and src buffers.
|
||||
const inputMargin = 16 - 1
|
||||
|
||||
// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
|
||||
// could be encoded with a copy tag. This is the minimum with respect to the
|
||||
// algorithm used by encodeBlock, not a minimum enforced by the file format.
|
||||
//
|
||||
// It also assumes that:
|
||||
// len(dst) >= MaxEncodedLen(len(src)) &&
|
||||
// 0 < len(src) && len(src) <= maxBlockSize
|
||||
func encodeBlock(dst, src []byte) (d int) {
|
||||
// Return early if src is short.
|
||||
if len(src) <= 4 {
|
||||
return emitLiteral(dst, src)
|
||||
}
|
||||
|
||||
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
|
||||
const maxTableSize = 1 << 14
|
||||
shift, tableSize := uint(32-8), 1<<8
|
||||
for tableSize < maxTableSize && tableSize < len(src) {
|
||||
shift--
|
||||
tableSize *= 2
|
||||
}
|
||||
var table [maxTableSize]int32
|
||||
|
||||
// Iterate over the source bytes.
|
||||
var (
|
||||
s int32 // The iterator position.
|
||||
t int32 // The last position with the same hash as s.
|
||||
lit int32 // The start position of any pending literal bytes.
|
||||
|
||||
// Copied from the C++ snappy implementation:
|
||||
//
|
||||
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
||||
// found, start looking only at every other byte. If 32 more bytes are
|
||||
// scanned, look at every third byte, etc.. When a match is found,
|
||||
// immediately go back to looking at every byte. This is a small loss
|
||||
// (~5% performance, ~0.1% density) for compressible data due to more
|
||||
// bookkeeping, but for non-compressible data (such as JPEG) it's a
|
||||
// huge win since the compressor quickly "realizes" the data is
|
||||
// incompressible and doesn't bother looking for matches everywhere.
|
||||
//
|
||||
// The "skip" variable keeps track of how many bytes there are since
|
||||
// the last match; dividing it by 32 (ie. right-shifting by five) gives
|
||||
// the number of bytes to move ahead for each iteration.
|
||||
skip uint32 = 32
|
||||
)
|
||||
for uint32(s+3) < uint32(len(src)) { // The uint32 conversions catch overflow from the +3.
|
||||
// Update the hash table.
|
||||
b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3]
|
||||
h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24
|
||||
p := &table[(h*0x1e35a7bd)>>shift]
|
||||
// We need to to store values in [-1, inf) in table. To save
|
||||
// some initialization time, (re)use the table's zero value
|
||||
// and shift the values against this zero: add 1 on writes,
|
||||
// subtract 1 on reads.
|
||||
t, *p = *p-1, s+1
|
||||
// If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte.
|
||||
if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] {
|
||||
s += int32(skip >> 5)
|
||||
skip++
|
||||
continue
|
||||
}
|
||||
skip = 32
|
||||
// Otherwise, we have a match. First, emit any pending literal bytes.
|
||||
if lit != s {
|
||||
d += emitLiteral(dst[d:], src[lit:s])
|
||||
}
|
||||
// Extend the match to be as long as possible.
|
||||
s0 := s
|
||||
s, t = s+4, t+4
|
||||
for int(s) < len(src) && src[s] == src[t] {
|
||||
s++
|
||||
t++
|
||||
}
|
||||
// Emit the copied bytes.
|
||||
d += emitCopy(dst[d:], s-t, s-s0)
|
||||
lit = s
|
||||
}
|
||||
|
||||
// Emit any final pending literal bytes and return.
|
||||
if int(lit) != len(src) {
|
||||
d += emitLiteral(dst[d:], src[lit:])
|
||||
}
|
||||
return d
|
||||
}
|
||||
// The encoded output must start with at least a 1 byte literal, as there are
|
||||
// no previous bytes to copy. A minimal (1 byte) copy after that, generated
|
||||
// from an emitCopy call in encodeBlock's main loop, would require at least
|
||||
// another inputMargin bytes, for the reason above: we want any emitLiteral
|
||||
// calls inside encodeBlock's main loop to use the fast path if possible, which
|
||||
// requires being able to overrun by inputMargin bytes. Thus,
|
||||
// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
|
||||
//
|
||||
// The C++ code doesn't use this exact threshold, but it could, as discussed at
|
||||
// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
|
||||
// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
|
||||
// optimization. It should not affect the encoded form. This is tested by
|
||||
// TestSameEncodingAsCppShortCopies.
|
||||
const minNonLiteralBlockSize = 1 + 1 + inputMargin
|
||||
|
||||
// MaxEncodedLen returns the maximum length of a snappy block, given its
|
||||
// uncompressed length.
|
||||
|
@ -256,7 +138,7 @@ func NewBufferedWriter(w io.Writer) *Writer {
|
|||
}
|
||||
}
|
||||
|
||||
// Writer is an io.Writer than can write Snappy-compressed bytes.
|
||||
// Writer is an io.Writer that can write Snappy-compressed bytes.
|
||||
type Writer struct {
|
||||
w io.Writer
|
||||
err error
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue